Modern convergence theory for stiff initial-value problems
نویسندگان
چکیده
منابع مشابه
An automatic multistep method for solving stiff initial value problems
A multistep method with matricial coefficients is developed. It can be used to solve stiff initial value problems of the form y’= Ay + g(x,y). This method bears the nature of the classical Adams-Bashforth-Moulton PC formula and can be shown to be consistent, convergent and A-stable. A careful reformulation of this method legitimatizes the implementation of this algorithm in a variable-step vari...
متن کاملMODIFIED K-STEP METHOD FOR SOLVING FUZZY INITIAL VALUE PROBLEMS
We are concerned with the development of a K−step method for the numerical solution of fuzzy initial value problems. Convergence and stability of the method are also proved in detail. Moreover, a specific method of order 4 is found. The numerical results show that the proposed fourth order method is efficient for solving fuzzy differential equations.
متن کاملInitial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملConvergence of the Adomian Decomposition Method for Initial-Value Problems
We prove convergence of the Adomian decomposition method for an abstract initial-value problem using the method of majorants from the Cauchy-Kowalevskaya theorem for differential equations with analytic vector fields. Convergence rates of the Adomian method are investigated in the context of the nonlinear Schrödinger equation. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1993
ISSN: 0377-0427
DOI: 10.1016/0377-0427(93)90260-i